
A Shadow Cost of Jacobian Accumulation in

Computation Graph of Backpropagation

Ruo Ando
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

Yoshihisa Fukuhara, Yoshiyasu Takefuji

Musashino University

3-3-3 Ariake, Koto-Ku, Tokyo, Japan

Abstract—Backpropagation applies backward automatic

differentiation on the computational graph. Theoretically, it is

assumed that the computation time per processing unit remains

unchanged as the number of epochs increases. This paper

introduces a novel phenomenon: as the number of batch

processes increases, the time to complete the backward automatic

differentiation increases. The proposed method implements error

backpropagation by implementing recursive calls to the

backpropagation function through class derivation. It was shown

that the execution time of the processing unit of this recursive

execution gradually increases over the course of the learning

process. This paper also discusses the possible causes of this

hidden computational cost.
Keywords—Back propagation, reverse mode diffrentiation,

gradual increase of elapsed time.component

I. INTRODUCTION

Reverse mode differentiation is currently employed in deep

learning frameworks. The implementation of backward

automatic differentiation used in error back propagation makes

extensive use of the chain rule. The chain rule was invented by

Leibniz in the 17th century [1]. Engineering applications of the

chain rule began in the 1960s, mainly in the field of control [2].

Based on the results of these studies, BP was formulated in

1986 [3]. One of the main themes of error backpropagation in

the 21st century is the gradient vanishing problem. In 2006,

methods to solve the gradient vanishing problem, such as prior

learning, were proposed [4]. This paper tests the following

hypotheses:

Hypothesis: The computation graph does not change regardless

of the number of batch processes or epochs, so the execution

time per processing unit does not change.

This paper implements backpropagation by recursive function

calls on a computational graph to test the above hypothesis.

II. RELATED WORK

Backpropagation is a special case of a broad class of

techniques called reverse mode automatic differentiation. The

task of reducing computational complexity by simplifying the

computational graphs generated during reverse mode

automatic differentiation belongs to the NP-complete problem

[5]. Theano [6] and Tensorflow[7] use heuristics to simplify

the iterative computational graph while matching known

patterns Some studies use quadratic partial derivatives to

calculate the gradient.

III. METHODOLOGY

The proposed method measures the execution time of back
propagation on an epoch or batch basis.

A. Fromulation

First of all, the loss fuction is defined as follows:

The derivative of the output layer is as follows:

where:

Simply put,

The differential of the intermediate layer is as follows:

Where:

Simply put,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030247
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

Listing 1. Core routine of backpropagation.

B. Implementation

We define four classes: model. graph. function and variable.

Figure 1 depicts the program control of forward and backward

propagation by the member function (*creator) of the variable

class. In forward propagation, the program generates a new

function class. In backward propagation, the program traces

the function pointer (*creator) through the argument of the

function. Note that *creator points to function 1, of which

input is variable 1.

Figure 1.

Figure 2 depicts tree view of proposal method which is same

as Figure 1. In Figure 2, program run down as a new variable

is generated in each function code. Also, as shown in this

figure, some functions have two arguments, while others have

one argument. Each function has a return value of variable

class. When a function is called, the variable class of the

return value is generated, and the function from which it was

generated is specified by "this" and registered. This makes it

possible to refer to which function generated each variable

class at the time of backpropagation. In backpropagation, the

backpropagation function is first called from the variable

class.

Figure 2.

There are two back propagation invocation points: line 14 and

line 19. At line 16 of Listing 1, the backpropagation function

of the function class that generated this variable class is called.

After this call, the backpropagation function is executed for

each variable, which is an argument of the backpropagate

action function of the completed function class. This process

is performed in a loop starting at line 16.

IV. EXPERMENTAL RESULTS

In the experiment, we use a workstation with Intel(R) Xeon(R)

CPU E5-2620 v4 (2.10GHz) and 251G RAM. The evaluation

experiment uses a basic multilayer perceptron for recognizing

MNIST dataset. The snippet of our program is shown in

Listing 2.

Figure 3 plots the execution time measured for each batch

process. CPU idle time is measured by batch unit. The

experiment was conducted with a sample size of 18,000

divided into 50 batches. The units on the y-axis are

milliseconds (execution time), and x depicts the number of

batches processed. The overall trend shows a slight increase,
oscillating between a minimum of 7 milliseconds and a

maximum of 14 milliseconds.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030247
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

Listing 2.

Figure 3. Elapsed time (sec) per batches.

Figure 4 plots the execution time per epoch. Here, too, the
overall trend is upward, oscillating between 16000 and 25000
ms. Finally, we find that the processing time increased by a
factor of 1.6 during the 30 epochs.

Figure 4. Elapsed time (sec) per epoches.

Although the overall number of repetitions is the same, the rate
of increase is higher for the epoch measurement time compared
to the batch measurement. This is because the number of
iterations for the batch is 3600, while the number of iterations
for the epoch is 30. In other words, the total processing time for
120 batches per epoch is totaled for each epoch. In addition, the
variation in processing time per batch is very large. In the
comparison between Figures 3 and 4, it can be seen that Figure
3 has more spikes in execution time due to external factors, but
the trend as a whole is increasing. From this, it can be seen that
the increase in the trend of execution time due to the increase

in the number of epochs in Figure 4 is not caused by the sum of
the external disturbances in Figure 3. The conclusion is that as
the number of epochs increases, there is a shadow cost, where
the processing content is the same, but the processing time
increases.

V. CONCLUSION

In this paper, we have done the shadow cost of processing the

computational graph of error back propagation. The

hypothesis stated at the beginning of this paper was as follows.

Hypothesis: The computation graph does not change regardless

of the number of batch processes or epochs, so the execution

time per processing unit does not change.

In fact, it was shown that even if the computational graph does

not change during the learning process, the computation time

per processing unit time gradually increases. This is quite

difficult to formulate theoretically into a mathematical

equation. The proposed method implements a forward

propagation network using C++ object orientation and

function pointers. In the evaluation experiments, the execution

time for each epoch and number of batch processes was

measured in milliseconds. The measurement results showed

that the average processing time per epoch increased by 7 to 8

milliseconds through 30 trials. The processing time per batch

increased, on average, by 16,000 to 24,000 milliseconds

through 3,600 trials. Experimental results reveal that there is a

shadow cast to the processing time of backpropagation, which

increases with each successive epoch and batch process. One

possible factor for shadow cost is the delay in memory release

timing during class derivation and pointer processing. For

further work, we will improve the debugging method to

validate freeing memory through backward propagation.

REFERENCES

[1] Rodriguez, Omar Hernandez and Lopez Fernandez, Jorge M. (2010) “A

semiotic reflection on the didactics of the Chain rule,” The Mathematics
Enthusiast: Vol. 7 : No. 2, Art. 10.

[2] Stuart E Dreyfus, "Dynamic programming and the calculus of

variations", J. Math. Anal. and Appl., 1 (No. 2) (1960), pp. 228-239
[3] Uwe Naumann:Optimal Jacobian accumulation is NP-complete. Math.

Program. 112(2): 427-441 (2008)

[4] Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R.,
Desjardins, G., Turian, J., Warde-Farley, D., and Bengio, Y.

(2010).Theano: a CPU and GPU math expression compiler.In

Proceedings of the Python for Scientific Computing Conference (SciPy).
[5] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay

Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, Xiaoqiang Zheng:

TensorFlow: A System for Large-Scale Machine Learning. OSDI 2016:
265-283

[6] Ronald J. Williams, David Zipser: A Learning Algorithm for

Continually Running Fully Recurrent Neural Networks. Neural Comput.
1(2): 270-280 (1989)

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal

representations by error propagation," Parallel Distributed Processing:
Explorations in the Microstructures of Cognition, Vol. I, D. E.

Rumelhart and J. L. McClelland (Eds.) Cambridge, MA: MIT Press, pp.

318-362, 1986
[8] Yurii E. Nesterov: Primal-dual subgradient methods for convex

problems. Math. Program. 120(1): 221-259 (2009)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030247
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

