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Abstract—Backpropagation applies backward automatic 

differentiation on the computational graph. Theoretically, it is 

assumed that the computation time per processing unit remains 

unchanged as the number of epochs increases. This paper 

introduces a novel phenomenon: as the number of batch 

processes increases, the time to complete the backward automatic 

differentiation increases. The proposed method implements error 

backpropagation by implementing recursive calls to the 

backpropagation function through class derivation. It was shown 

that the execution time of the processing unit of this recursive 

execution gradually increases over the course of the learning 

process. This paper also discusses the possible causes of this 

hidden computational cost.  
Keywords—Back propagation, reverse mode diffrentiation, 

gradual increase of elapsed time.component  

I. INTRODUCTION

Reverse mode differentiation is currently employed in deep 

learning frameworks. The implementation of backward 

automatic differentiation used in error back propagation makes 

extensive use of the chain rule. The chain rule was invented by 

Leibniz in the 17th century [1]. Engineering applications of the 

chain rule began in the 1960s, mainly in the field of control [2]. 

Based on the results of these studies, BP was formulated in 

1986 [3]. One of the main themes of error backpropagation in 

the 21st century is the gradient vanishing problem. In 2006, 

methods to solve the gradient vanishing problem, such as prior 

learning, were proposed [4]. This paper tests the following 

hypotheses: 

Hypothesis: The computation graph does not change regardless 

of the number of batch processes or epochs, so the execution 

time per processing unit does not change. 

This paper implements backpropagation by recursive function 

calls on a computational graph to test the above hypothesis. 

II. RELATED WORK

Backpropagation is a special case of a broad class of 

techniques called reverse mode automatic differentiation. The 

task of reducing computational complexity by simplifying the 

computational graphs generated during reverse mode 

automatic differentiation belongs to the NP-complete problem 

[5]. Theano [6] and Tensorflow[7] use heuristics to simplify 

the iterative computational graph while matching known 

patterns Some studies use quadratic partial derivatives to 

calculate the gradient. 

III. METHODOLOGY

The proposed method measures the execution time of back 
propagation on an epoch or batch basis. 

A. Fromulation

First of all, the loss fuction is defined as follows:

The derivative of the output layer is as follows: 

where: 

Simply put, 

The differential of the intermediate layer is as follows: 

Where: 

Simply put, 
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Listing 1.  Core routine of  backpropagation. 

B. Implementation

We define four classes: model. graph. function and variable. 

Figure 1 depicts the program control of forward and backward 

propagation by the member function (*creator) of the variable 

class. In forward propagation, the program generates a new 

function class. In backward propagation, the program traces 

the function pointer (*creator) through the argument of the 

function. Note that *creator points to function 1, of which 

input is variable 1. 

Figure 1. 

Figure 2 depicts tree view of proposal method which is same 

as Figure 1. In Figure 2, program run down as a new variable 

is generated in each function code. Also, as shown in this 

figure, some functions have two arguments, while others have 

one argument. Each function has a return value of variable 

class. When a function is called, the variable class of the 

return value is generated, and the function from which it was 

generated is specified by "this" and registered. This makes it 

possible to refer to which function generated each variable 

class at the time of backpropagation. In backpropagation, the 

backpropagation function is first called from the variable 

class. 

Figure 2. 

There are two back propagation invocation points: line 14 and 

line 19. At line 16 of Listing 1, the backpropagation function 

of the function class that generated this variable class is called. 

After this call, the backpropagation function is executed for 

each variable, which is an argument of the backpropagate 

action function of the completed function class. This process 

is performed in a loop starting at line 16. 

IV. EXPERMENTAL RESULTS

In the experiment, we use a workstation with Intel(R) Xeon(R) 

CPU E5-2620 v4 (2.10GHz) and 251G RAM. The evaluation 

experiment uses a basic multilayer perceptron for recognizing 

MNIST dataset. The snippet of our program is shown in 

Listing 2.  

Figure 3 plots the execution time measured for each batch 

process. CPU idle time is measured by batch unit. The 

experiment was conducted with a sample size of 18,000 

divided into 50 batches. The units on the y-axis are 

milliseconds (execution time), and x depicts the number of 

batches processed. The overall trend shows a slight increase, 
oscillating between a minimum of 7 milliseconds and a 

maximum of 14 milliseconds. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030247
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org


Listing 2. 

Figure 3. Elapsed time (sec) per batches. 

Figure 4 plots the execution time per epoch. Here, too, the 
overall trend is upward, oscillating between 16000 and 25000 
ms. Finally, we find that the processing time increased by a 
factor of 1.6 during the 30 epochs. 

Figure 4. Elapsed time (sec) per epoches. 

Although the overall number of repetitions is the same, the rate 
of increase is higher for the epoch measurement time compared 
to the batch measurement. This is because the number of 
iterations for the batch is 3600, while the number of iterations 
for the epoch is 30. In other words, the total processing time for 
120 batches per epoch is totaled for each epoch. In addition, the 
variation in processing time per batch is very large. In the 
comparison between Figures 3 and 4, it can be seen that Figure 
3 has more spikes in execution time due to external factors, but 
the trend as a whole is increasing. From this, it can be seen that 
the increase in the trend of execution time due to the increase 

in the number of epochs in Figure 4 is not caused by the sum of 
the external disturbances in Figure 3. The conclusion is that as 
the number of epochs increases, there is a shadow cost, where 
the processing content is the same, but the processing time 
increases. 

V. CONCLUSION

In this paper, we have done the shadow cost of processing the 

computational graph of error back propagation. The 

hypothesis stated at the beginning of this paper was as follows. 

Hypothesis: The computation graph does not change regardless 

of the number of batch processes or epochs, so the execution 

time per processing unit does not change. 

In fact, it was shown that even if the computational graph does 

not change during the learning process, the computation time 

per processing unit time gradually increases. This is quite 

difficult to formulate theoretically into a mathematical 

equation. The proposed method implements a forward 

propagation network using C++ object orientation and 

function pointers. In the evaluation experiments, the execution 

time for each epoch and number of batch processes was 

measured in milliseconds. The measurement results showed 

that the average processing time per epoch increased by 7 to 8 

milliseconds through 30 trials. The processing time per batch 

increased, on average, by 16,000 to 24,000 milliseconds 

through 3,600 trials. Experimental results reveal that there is a 

shadow cast to the processing time of backpropagation, which 

increases with each successive epoch and batch process. One 

possible factor for shadow cost is the delay in memory release 

timing during class derivation and pointer processing. For 

further work, we will improve the debugging method to 

validate freeing memory through backward propagation. 
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